
    sh;                         S r SSKrSSKrS/rS rS rS r\\S.r\R                  R                  S5      \R                  R                  S	5      \R                  SS
S.S jj5       5       5       rg)z0Fast algorithms for the densest subgraph problem    Ndensest_subgraphc                 `   U R                  5       S:X  a  S[        5       4$ US:  a  [        SU 35      e[        R	                  U R
                  S5      nSn[        5       n[        U5       GH<  n[        R                  R                  5       nU R                   H  u  pxUR                  XrU   U-   5        M     [        U R
                  5      n	U R                  5       n
[        U R                  5      nU	(       d  M  [        U	5      nX-  nX:  a  Un[        U	5      nUR                  5       u  puXy;  a  MC  X'==   X   -  ss'   U R                  U5       H4  nX;   d  M
  X==   S-  ss'   U
S-  n
UR                  XU   X   -   5        M6     U	R                  U5        U	(       a  M  GM?     X44$ )Nr              <The number of iterations must be an integer >= 1. Provided: )number_of_edgesset
ValueErrordictfromkeysnodesrangenxutils
BinaryHeapdegreeinsertlenpop	neighborsremove)G
iterationsloadsbest_densitybest_subgraph_heapnoder   remaining_nodes	num_edgescurrent_degrees	num_nodescurrent_densityneighbors                  }/Users/tiagomarins/Projetos/claudeai/copy_bank/venv/lib/python3.13/site-packages/networkx/algorithms/approximation/density.py_greedy_plus_plusr'   
   s   aCEzA~J:,W
 	
 MM!''1%ELEM:xx""$ HHLDKKDkF23 % agg,%%'	qxx.oO,I (3O -. #O 4 hhjGD* K?00K KK-.#-2-NIKK/O<U*UV	 . ""4(7 o R &&    c                 b   [         R                  R                  5       n[        U R                  5      nU H  nUR                  XqU   5        M     U R                  5       nSn	[        5       n
U(       a  [        U5      nX-  nX:  a  Un	[        U5      n
UR                  5       u  pX;  a  UR                  5       u  pX;  a  M  U R                  U5       H:  nX;   d  M
  X?   nUU==   X$X4      -  ss'   US-  nUR                  XU   5        M<     UR                  U5        U(       a  M  X4$ )a  
Optimized fractional peeling using NumPy arrays.

Parameters
----------
G : networkx.Graph
    The input graph.
b : numpy.ndarray
    Induced load vector.
x : numpy.ndarray
    Fractional edge values.
node_to_idx : dict
    Mapping from node to index.
edge_to_idx : dict
    Mapping from edge to index.

Returns
-------
best_density : float
    The best density found.
best_subgraph : set
    The subset of nodes defining the densest subgraph.
r   r   )r   r   r   r	   r   r   r   r   r   r   r   )r   bxnode_to_idxedge_to_idxr   r    idxr!   r   r   r#   r$   r   r   r%   neighbor_idxs                    r&   _fractional_peelingr0   B   s&   0 88 D!''lO C3   !!#ILEM
(	#/)*L0M ((*)hhjGD ) D)H**4,1(1A%B#CCQ	Ho6 * 	t$- /0 &&r(   c                    U R                  5       S:X  a  S[        5       4$ US:  a  [        SU 35      eSS Kn[	        U 5       VVs0 s H  u  p4XC_M	     nnnU R                  5       nU R                  5       nU R                   VV	s/ s H  u  pX4PM
     sn	nU R                   VV	s/ s H  u  pX4PM
     sn	n-   n
[	        U
5       VVs0 s H  u  p;X_M	     nnn[        U
5      nUR                  XR                  S9n[        U5       H	  nXs-   X'   M     [        USU-  5       H	  nX7-
  X'   M     UR                  USUR                  S9nUR                  5       nUR                  XR                  S9nUR                  XbR                  S9nSnUR                  U
 VVs/ s H
  u  nnXX   PM     snnUR                  S9n[!        S	 U R"                   5       5      nS
U-  n[        U5       H  nSUS S & UR$                  R'                  UUU5        USU-  UU   -  -
  nS[(        R*                  " SSUS-  -  -   5      -   S-  nUUU   -
  S-   S-  nUR-                  USS5      nUUS-
  U-  UU-
  -  -   UU-  UU-
  -  -   nUnUnM     SUS S & UR$                  R'                  UUU5        [/        U UXU5      $ s  snnf s  sn	nf s  sn	nf s  snnf s  snnf )Nr   r   r   r   )dtype   g      ?g      ?c              3   *   #    U  H	  u  pUv   M     g 7f)N ).0r   degs      r&   	<genexpr>_fista.<locals>.<genexpr>   s     0xVQSxs   g?g       @g      @)r   r	   r
   numpy	enumeratenumber_of_nodesedgesr   emptyint32r   fullfloat32copyzerosarraymaxr   addatmathsqrtclipr0   )r   r   npr.   r   r,   r#   num_undirected_edgesuvbidirectional_edgesedger-   r!   reverse_edge_idxr+   yzr*   tkr   edge_src_indices
max_degreelearning_ratetknewnew_xuv	clamped_xs                              r&   _fistar[      s   aCEzA~J:,W
 	
  /8l;l49lK;!!#I,,. /0gg6gdaA6g6QWW9UWTQ1&W9UU.78K.LM.L49.LKM'(I xx	x:)* 4 : +)1/C+CD # : E 		3bjj1A	A
**-A
**-A	B xx$78$7DAq$78   
 0qxx00J*$M :!
		!%q) m#a(8&999 tyyS2q5[11S8 q)**S0C7GGGS#.	 SE!i!m45Ezi!m,- 	
  5 : AaDFFIIa!1% q!Q[AAI <
 79UM( 	9s   J?K(KK#K
)zgreedy++fistadirected
multigraphr\   )methodc                h     [         U   nU" X5      $ ! [         a  n[        U S35      UeSnAff = f)u}  Returns an approximate densest subgraph for a graph `G`.

This function runs an iterative algorithm to find the densest subgraph,
and returns both the density and the subgraph. For a discussion on the
notion of density used and the different algorithms available on
networkx, please see the Notes section below.

Parameters
----------
G : NetworkX graph
    Undirected graph.

iterations : int, optional (default=1)
    Number of iterations to use for the iterative algorithm. Can be
    specified positionally or as a keyword argument.

method : string, optional (default='fista')
    The algorithm to use to approximate the densest subgraph. Supported
    options: 'greedy++' by Boob et al. [2]_ and 'fista' by Harb et al. [3]_.
    Must be specified as a keyword argument. Other inputs produce a
    ValueError.

Returns
-------
d : float
    The density of the approximate subgraph found.

S : set
    The subset of nodes defining the approximate densest subgraph.

Examples
--------
>>> G = nx.star_graph(4)
>>> nx.approximation.densest_subgraph(G, iterations=1)
(0.8, {0, 1, 2, 3, 4})

Notes
-----
**Problem Definition:**
The densest subgraph problem (DSG) asks to find the subgraph
$S \subseteq V(G)$ with maximum density. For a subset of the nodes of
$G$, $S \subseteq V(G)$, define $E(S) = \{ (u,v) : (u,v)\in E(G),
u\in S, v\in S \}$ as the set of edges with both endpoints in $S$.
The density of $S$ is defined as $|E(S)|/|S|$, the ratio between the
edges in the subgraph $G[S]$ and the number of nodes in that subgraph.
Note that this is different from the standard graph theoretic definition
of density, defined as $\frac{2|E(S)|}{|S|(|S|-1)}$, for historical
reasons.

**Exact Algorithms:**
The densest subgraph problem is polynomial time solvable using maximum
flow, commonly referred to as Goldberg's algorithm. However, the
algorithm is quite involved. It first binary searches on the optimal
density, $d^\ast$. For a guess of the density $d$, it sets up a flow
network $G'$ with size $O(m)$. The maximum flow solution either
informs the algorithm that no subgraph with density $d$ exists, or it
provides a subgraph with density at least $d$. However, this is
inherently bottlenecked by the maximum flow algorithm. For example, [2]_
notes that Goldberg’s algorithm was not feasible on many large graphs
even though they used a highly optimized maximum flow library.

**Charikar's Greedy Peeling:**
While exact solution algorithms are quite involved, there are several
known approximation algorithms for the densest subgraph problem.

Charikar [1]_ described a very simple 1/2-approximation algorithm for DSG
known as the greedy "peeling" algorithm. The algorithm creates an
ordering of the nodes as follows. The first node $v_1$ is the one with
the smallest degree in $G$ (ties broken arbitrarily). It selects
$v_2$ to be the smallest degree node in $G \setminus v_1$. Letting
$G_i$ be the graph after removing $v_1, ..., v_i$ (with $G_0=G$),
the algorithm returns the graph among $G_0, ..., G_n$ with the highest
density.

**Greedy++:**
Boob et al. [2]_ generalized this algorithm into Greedy++, an iterative
algorithm that runs several rounds of "peeling". In fact, Greedy++ with 1
iteration is precisely Charikar's algorithm. The algorithm converges to a
$(1-\epsilon)$ approximate densest subgraph in $O(\Delta(G)\log
n/\epsilon^2)$ iterations, where $\Delta(G)$ is the maximum degree,
and $n$ is the number of nodes in $G$. The algorithm also has other
desirable properties as shown by [4]_ and [5]_.

**FISTA Algorithm:**
Harb et al. [3]_ gave a faster and more scalable algorithm using ideas
from quadratic programming for the densest subgraph, which is based on a
fast iterative shrinkage-thresholding algorithm (FISTA) algorithm. It is
known that computing the densest subgraph can be formulated as the
following convex optimization problem:

Minimize $\sum_{u \in V(G)} b_u^2$

Subject to:

$b_u = \sum_{v: \{u,v\} \in E(G)} x_{uv}$ for all $u \in V(G)$

$x_{uv} + x_{vu} = 1.0$ for all $\{u,v\} \in E(G)$

$x_{uv} \geq 0, x_{vu} \geq 0$ for all $\{u,v\} \in E(G)$

Here, $x_{uv}$ represents the fraction of edge $\{u,v\}$ assigned to
$u$, and $x_{vu}$ to $v$.

The FISTA algorithm efficiently solves this convex program using gradient
descent with projections. For a learning rate $\alpha$, the algorithm
does:

1. **Initialization**: Set $x^{(0)}_{uv} = x^{(0)}_{vu} = 0.5$ for all
edges as a feasible solution.

2. **Gradient Update**: For iteration $k\geq 1$, set
$x^{(k+1)}_{uv} = x^{(k)}_{uv} - 2 \alpha \sum_{v: \{u,v\} \in E(G)}
x^{(k)}_{uv}$. However, now $x^{(k+1)}_{uv}$ might be infeasible!
To ensure feasibility, we project $x^{(k+1)}_{uv}$.

3. **Projection to the Feasible Set**: Compute
$b^{(k+1)}_u = \sum_{v: \{u,v\} \in E(G)} x^{(k)}_{uv}$ for all
nodes $u$. Define $z^{(k+1)}_{uv} = x^{(k+1)}_{uv} - 2 \alpha
b^{(k+1)}_u$. Update $x^{(k+1)}_{uv} =
CLAMP((z^{(k+1)}_{uv} - z^{(k+1)}_{vu} + 1.0) / 2.0)$, where
$CLAMP(x) = \max(0, \min(1, x))$.

With a learning rate of $\alpha=1/\Delta(G)$, where $\Delta(G)$ is
the maximum degree, the algorithm converges to the optimum solution of
the convex program.

**Fractional Peeling:**
To obtain a **discrete** subgraph, we use fractional peeling, an
adaptation of the standard peeling algorithm which peels the minimum
degree vertex in each iteration, and returns the densest subgraph found
along the way. Here, we instead peel the vertex with the smallest
induced load $b_u$:

1. Compute $b_u$ and $x_{uv}$.

2. Iteratively remove the vertex with the smallest $b_u$, updating its
neighbors' load by $x_{vu}$.

Fractional peeling transforms the approximately optimal fractional
values $b_u, x_{uv}$ into a discrete subgraph. Unlike traditional
peeling, which removes the lowest-degree node, this method accounts for
fractional edge contributions from the convex program.

This approach is both scalable and theoretically sound, ensuring a quick
approximation of the densest subgraph while leveraging fractional load
balancing.

References
----------
.. [1] Charikar, Moses. "Greedy approximation algorithms for finding dense
   components in a graph." In International workshop on approximation
   algorithms for combinatorial optimization, pp. 84-95. Berlin, Heidelberg:
   Springer Berlin Heidelberg, 2000.

.. [2] Boob, Digvijay, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos
   Tsourakakis, Di Wang, and Junxing Wang. "Flowless: Extracting densest
   subgraphs without flow computations." In Proceedings of The Web Conference
   2020, pp. 573-583. 2020.

.. [3] Harb, Elfarouk, Kent Quanrud, and Chandra Chekuri. "Faster and scalable
   algorithms for densest subgraph and decomposition." Advances in Neural
   Information Processing Systems 35 (2022): 26966-26979.

.. [4] Harb, Elfarouk, Kent Quanrud, and Chandra Chekuri. "Convergence to
   lexicographically optimal base in a (contra) polymatroid and applications
   to densest subgraph and tree packing." arXiv preprint arXiv:2305.02987
   (2023).

.. [5] Chekuri, Chandra, Kent Quanrud, and Manuel R. Torres. "Densest
   subgraph: Supermodularity, iterative peeling, and flow." In Proceedings of
   the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
   1531-1555. Society for Industrial and Applied Mathematics, 2022.
z( is not a valid choice for an algorithm.N)
ALGORITHMSKeyErrorr
   )r   r   r_   algoes        r&   r   r      sJ    bU&!   UF8#KLMSTTUs   	 
1,1)r   )__doc__rH   networkxr   __all__r'   r0   r[   ra   r   not_implemented_for_dispatchabler   r5   r(   r&   <module>rj      s    6  
5'p='@NBb ,f=
 j)l+s s  , *sr(   